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Abstract

In protein-RNA cross-linking mass spectrometry, UV or chemical cross-linking intro-

duces stable bonds between amino acids and nucleic acids in protein-RNA complexes

that are then analyzed and detected in mass spectra. This analytical tool delivers valu-

able information about RNA-protein interactions and RNA docking sites in proteins,

both in vitro and in vivo. The identification of cross-linked peptides with oligonu-

cleotides of different length leads to a combinatorial increase in search space. We

demonstrate that the peptide retention time prediction tasks can be transferred to the

task of cross-linked peptide retention time prediction using a simple amino acid com-

position encoding, yielding improved identification rates when the prediction error is

included in rescoring. For the more challenging task of including fragment intensity

prediction of cross-linked peptides in the rescoring, we obtain, on average, a similar

improvement. Further improvement in the encoding and fine-tuning of retention time

and intensity predictionmodelsmight lead to further gains, andmerit further research.
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1 INTRODUCTION

Interactions betweenproteins andRNAare important formanybiolog-

ical processes, such as gene expression, RNA splicing, and translation

[1, 2]. Understanding these interactions is essential for the identi-

fication of therapeutic targets and development of novel therapies

[3]. Protein-RNA crosslinking has become an increasingly popular

technique for studying protein-RNA interactions. With advance-

ments in mass spectrometry (MS) techniques, it is used to iden-

tify nucleotide-binding sites in cross-linked complexes with single

amino acid precision [4]. UV-induced crosslinking uses irradiation

with UVC (254 nm) to induce covalent bonds between predom-

inantly U nucleotides and amino acids in close spacial proximity,

while UVA (365 nm) is used to selectively activate RNA-incorporated

photoactivatable ribonucleosides (PARs) to crosslink RNAbinding pro-

teins (RBPs) [5, 6]. PARs such as 4-thiouridine (4SU) are commonly

used in UVA-based crosslinking. In chemical protein-RNA crosslink-

ing, reactive reagents like nitrogen mustard (NM) or diepoxybutane

(DEB) act as linkers between nucleotides and amino acids and can

bind almost all RNA bases [7]. Typically, chemical crosslinkers har-

bor two functional groups that are reactive toward amino acids

and nucleotides allowing them to form covalent bonds between

the molecule species. Both UV and chemical crosslinking create

stable bonds between RNA and proteins. During sample prepara-

tion, proteases (e.g., Trypsin) and RNAses cleave proteins and RNA

into manageable sizes. Typically, the length of the oligonucleotides

cross-linked to peptides varies between 1 and 4 nucleotides after

digestion and may depend on the protocol [8–10]. Cross-linked RNA-

peptide heteroconjugates are enriched using titanium dioxide (TiO2)

solid phase extraction which removes the non-crosslinked peptides.

The purified heteroconjugates are separated by liquid chromatog-

raphy and injected into a mass spectrometer during LC-MS analy-

sis.

However, these cross-links are sensitive to sample processing and

several other factors (denaturation, digestion, chemical instability of

cross-linkedadducts, fragmentationbehavior, etc.)which lead to awide

range of neutral losses on precursor ions, as well as fragment ions

[11, 12]. In contrast to classic post-translational modifications (PTMs),

cross-links may have oligonucleotides of different of oligonucleotides

bound to a peptide, unspecific binding to residues, and the presence of

numerous neutral losses (e.g., water, ammonia, base, and ribose losses)

observed in protein-RNA cross-linking poses additional challenges to

their identification and a large number of candidates that need to be

considered [5, 13, 14].

Like traditional peptide database search in shotgun proteomics,

protein-RNA crosslink peptides can be computationally identified

from tandem mass spectra (MS/MS) by comparing them to theoreti-

cal spectra derived from protein databases. Specialized protein-RNA

crosslink search engines support large numbers of delta and neu-

tral loss masses caused by the crosslinking chemistry, crosslinking

reagents, and protocols need to accommodate for the diverse pre-

cursor and fragmentation adducts [15, 16]. We recently developed

NuXL (publication in progress), a nucleotide cross-link search engine

Significance Statement

Protein-RNA cross-linking mass spectrometry is an emerg-

ingmethod used to study protein-RNA interactions that play

a pivotal role in a cell. Crosslink information on amino acid

level delivers valuable spatial information that can help in

deducing functional and structural information about pro-

teins. The cross-linking reaction leads to a large search space

of structurally and physicochemical diverse modifications

that lead to complex fragmentation patterns. Because of low

cross-linking yields and signal intensities, the confident iden-

tification of protein-RNA cross-links is challenging and an

active area of research. In this study,we investigate the appli-

cability of approaches developed for unmodified peptides or

peptideswith less complex PTMs to protein-RNA cross-links.

We show that the task of peptide retention time predic-

tion can be transferred to the task of protein-RNA retention

time prediction and identification rates are improved using

a simple encoding with atomic compositions. For the more

complex task of intensity prediction, we achieve similar

improvements using standard methods and by focusing on

more conserved fragmentation patterns.

that searches cross-linked peptide candidates while considering their

unique fragmentation behavior. NuXL controls the false-discovery rate

at the level of cross-links and supports an extendable set of UV and

chemical cross-linking protocols.

In addition to the challenges associated with the increased search

space, high-energy collision-induced dissociation (HCD) fragmenta-

tion of cross-links also yields more complex fragmentation patterns

than non-cross-linked peptides. The presence of RNA moieties in

cross-linked peptides results in the formation of additional fragment

ions typically not observed in non-cross-linked peptides, for example,

prefix ions (b-ions), suffix ions (y-ions), immonium ions, or marker

ions, all of which may carry RNA derived fragment adducts [15]. Since

protein-RNA cross-links often occur in low abundance, cross-linked

peptide levels are also relatively low in comparison to unmodified

peptides in the sample despite various enrichment strategies [2, 10].

Consequently, the identification of cross-linked peptides is considered

challenging.

Rescoring search engine results using a semi-supervised machine

learning approach, as implemented by the percolator algorithm, is an

established method frequently applied to improve identification rates.

Percolator trains a linear SVM on multiple peptide-spectrum matches

(PSMs) characteristics (like scores, multiple subscores, or general pep-

tide properties) to improve discrimination between true and false

identifications and to assign amorediscriminative, combined score [17,

18]. Recently, adding peptide properties in the rescoring that are them-

selves derived from retention time and intensity prediction methods

has become common.
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Methods that incorporate retention time and intensity predictions

in the rescoring process have a long history, with a trend toward more

complexmachine learningmodels [19, 20]. Common to thesemethods,

the deviation between observation and predictions is used to guide

the rescoring process and has been shown to increase the identifica-

tion sensitivity and specificity [21, 22]. More recently, deep learning

methods have been used to train models to predict the retention time

and intensity of modified or unmodified peptides [23, 24]. An example

of such a deep learning model is DeepLC which can accurately pre-

dict peptide retention times of unmodified andmodified peptides, even

for modifications not seen during training [25]. Intensity prediction, on

the other hand, is the process of estimating the relative abundance

or intensity of a peptide fragment in an MS experiment. MS2PIP is

a computational tool that uses machine learning algorithms to pre-

dict peptide fragment intensities based on various peptide and spectral

features [26].

Because protein-RNA cross-links lead to numerous RNA modifi-

cations (12–127, depending on the protocol in this study) diverse in

physicochemical properties and structure, we expected challenges in

the direct applicability of existing predictors or models trained only

on unmodified peptides or peptides with classical PTMs. We, thus, set

out to investigate if existing retention time and intensity prediction

methods can be readily (or with minor modifications) applied to the

domain of protein-RNA cross-linking to improve the identification rate

of cross-linked peptides.

2 MATERIALS AND METHODS

2.1 Datasets

We collected 4-thiorudine (4SU) based protein-RNA crosslink data

from the pRBSID experiment performed on human samples, as pub-

lished by Bae et al. [5] (PXD023401). In addition, we collected 4SU

protein-RNA crosslink data from the iTRAPP experiment of Saccha-

romyces cerevisiae samples, as published by Shchepachev et al. [14]

(PXD011071). We added in-house generated datasets, employing

conventional ultraviolet (UV) cross-linking and chemical cross-linking

using NM andDEB on Escherichia coli samples.

2.2 Cross-link identification data

We used the protein-RNA crosslinking search engine NuXL (v. 2023-

02-01, publication in progress, see the Supplementary Material for

a download link to the pre-release of the software; search engine

parameters are given in Table S1) to generate cross-link identifications

used in this study. To derive accurate retention times of cross-linked

peptides, we provided high-confidence cross-link spectrum matches

(CSMs, q < 0.01) as input to the OpenMS FeatureFinderIdentification

algorithm [27]. The retention time at the apex of the extracted elution

profiles was subsequently used as retention time used in the training

(see Table S2 for details).

2.3 Rescoring and evaluation

In all experiments, we used the percolator algorithm (version 3.05) for

rescoring [28]. In all cases, we evaluated the impact of retention time

and fragment intensity features on the number of identified CSMs at

the CSM-level q-value. To ensure that additional features do not lead

to overfitting (e.g., underestimate the true FDR based on the empir-

ical target-decoy FDR [28, 29]), we used an entrapment experiment

in which an equal number of entrapment proteins were added to the

protein database (E. coli K12 + Homo sapiens UniProt sequences) [30].

The main difference to a standard entrapment experiment is that we

focused on controlling the cross-link FDR and thus considered only

CSMs. CSMs mapping to the entrapment database were considered

false matches. The false match rate (FMR) among the set of reported

target CSMs was compared to the empirically determined CSM-level

FDR. To assess if the empirical FDR is valid and does not overestimate

the true FDR, the FMR should be similar and not consistently larger

than the corresponding empirical FDR [31].

2.4 Retention time prediction

Currently, there is comparably little experimental data available that

covers different protein-RNA crosslinking protocols, making it infea-

sible to train a deep learning model from scratch. However, in deep

learning, “fine-tuning” is a common transfer learning technique used

to improve the performance of a pre-trained model on a specific task

or dataset [23, 20, 32]. The process of fine-tuning involves taking a

pre-trained model, usually trained on a large and general dataset. The

model is then trained further on the more specialized and smaller

dataset for a specific task (typically with some slight modification of

the training process) [20]. In this study, we investigate fine-tuning the

DeepLC base model (originally trained on tryptic peptides) for pre-

diction of retention time for protein-RNA crosslinking. The DeepLC

(version 1.2.1) retention time predictor incorporates the atomic com-

position of the modification to train the model, to learn patterns that

generalize to unseen modifications. We encoded protein-RNA cross-

link modifications across all protocols (modifications per protocol UV:

12, DEB, NM: 14, 4SU: 127). The site of themodifications was encoded

using the site localization as determined by the NuXL search engine.

We used DeepLC as the base model for fine-tuning and froze all layers

until the concatenate part, which extracts low-level features. Further-

more, we then train the model to learn the high-level specific features

and patterns of newly observed cross-link modifications. To train the

generic model, we split all datasets into independent train and test

datasets (see Table S2 for details). For the protocol specific models,

datasets were grouped according to the cross-linking protocol and

split into independent train and test datasets. For both specific and

generic models, train and test data was filtered to be composed of only

non-redundant cross-links. Fine-tuning of generic and specific models

was performedwith DeepLCRetrainer (version 0.1.13, see Table S3 for

hyperparameters and Figure S2 for results on the train/test split). We

calculate retention time features (see Table S4 for full list) according
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(A) (B)

F IGURE 1 (A) Intensities of a crosslinked peptide (uridine cross-linked to VEGTEPTTAFNLFVGNLNFNK, cross-linked residue indicated in
bold) mirrored on intensities of the same non-crosslinked peptide. (B)Maximum observed intensity correlation between prefix (b-ions) and suffix
(y-ions) ions. For all protocols, considering only three prefix/suffix ions resulted in higher intensity correlations between non-cross-linked and
cross-linked peptides as opposed to considering all prefix/suffix ion intensities in the correlation calculation.

to the formula used in MS2Rescore [21] using the predictions of our

DeepLCmodels. These features form our retention time features used

in rescoring with percolator.

2.5 Intensity prediction

Currently, transfer learning of peptide intensities between unmodified

andmodified peptides is an active area of research. Due to the sparsity

of training data and large number of modifications, we investigated

an approach that leverages the conserved fragmentation behavior of

cross-links. It has previously been observed that the intensities of the

first few prefix ions (e.g., b-ions close to the N-terminus) and suffix

ions (e.g., y-ions close to the C-terminus) of non-cross-linked peptides

can be predicted with high accuracy and are discriminative for true

and false hits [33]. To investigate if the relative prefix and suffix-ion

intensities of cross-linked peptides and their non-cross-linked coun-

terparts are well conserved (and thus lead to transferable intensities,

see Figure 1A for one example), we calculated how well fragment

ion intensities between peptides and their cross-linked counterpart

correlate. We calculated the correlation considering all b- and y-ion

intensities and the maximum correlation obtained if only intensities of

the first three prefix and suffix ions are correlated. The total number

of peptide pairs (peptides and their cross-linked counterpart were

4SU: 502, NM: 502, DEB: 96, UV: 116). The reasoning for choosing

only the first three prefix/suffix ions is that the nucleotide is bound

to the short prefix or the short suffix—or neither. Considering all

prefix and suffix ions lead to lower correlations for the different

protocols (see Figure 1B) and also (on average) slightly worse results

if used in rescoring (see Figure S6) compared to using the shorter

prefix/suffix-ions instead. We argue that these short prefixes or

suffixes on average provide better conserved fragment intensities

than considering all fragment ions. Based on the correlation analysis,

we calculated our final intensity predictions features accordingly: the

maximum correlation between observed and predicted first three

prefix (b1-, b2-, and b3-ions) or suffix fragment ions (y1-, y2-, and

y3-ions). While less frequently observed, b1-ions were included for

the sake of consistency (e.g., they are also generated by the MS2PIP

peak intensity prediction). The intensities for missing peaks were set

to zero. To predict fragment intensities, we used the MS2PIP HCD

XGBoost-based machine learning model which was trained on tryptic

and non-tryptic (immunopeptides) HCD peptides [21].

3 RESULTS

First, we investigated whether retention time prediction can be used

to improve identification rates.Wecompared theperformanceof three

differentmodels: the baselinemodel trained solely onnon-cross-linked

peptides, a generic model fine-tuned on cross-links from all protocols,

and models fine-tuned on specific protocols. In all cases, the generic

and specific models performed better than the base model (see Table

S5). Specifically, the protocol-specific models exhibited more accurate

retention time predictions compared to the generic model in most

protein-RNA crosslinking protocols (NM, DEB, and 4SU, see Figure S1

for a summary). Interestingly, the UV cross-linking protocol did not

benefit from the UV specific model and performed better with the

generic model. One explanation could be that UV cross-linking gen-

erates a more diverse set of fragment adducts compared to chemical

and nucleotide analog cross-linking, and therefore benefits from the

additional training data.

Next, we examined the individual impact of including retention time

prediction and intensity prediction on the identification performance.

The performance of the protocol-specific model and generic models

is shown in Figure S5. For NM, DEB, and 4SU protocols the specific

models performed better than the generic model (except in case of

UV crosslinking). We selected the best models for final rescoring (see

Figure 2 and Figure S3). The number of identifications at 1% CSM-

level FDR for each rescoring experiment is provided in the figure’s

heading.
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F IGURE 2 Relative improvement in identification performance
for the four different protocols (at 1% cross-link spectrummatch
[CSM]-level FDR) if additional features (from retention time
predictions:+RT, intensity predictions:+intensities, or both: RT+
intensities) are added to the standardNuXL features prior to rescoring
using percolator.

Our findings reveal that the inclusion of both retention time and

intensity features is beneficial and increased the number of identified

CSMs (avg. gain of+3.70%, in individual runs amax. gain of 10.47% for

UV cross-linking, CSM q-value < 0.01) compared to running percola-

tor solely on the default NuXL features (see Figure 2 and Figure S4).

When comparing the effects of adding retention time predictions ver-

sus adding intensity predictions, we observed similar gains: including

only retention time predictions resulted in on average 2.51% improve-

ment in identification rates, while including only intensity prediction

improved results in the average case by 2.59%.Our entrapment experi-

ments, evaluatedon theCSMs, did not indicate overfitting (seeFigure3

for one example). The effects of the additional features on identifi-

cation rate and entrapment testing across all protocols are provided

in Figure S3. Because the MS2Rescore features have been success-

fully used in the past to boost identification rates, we also investigated

how the additional MS2Rescore features influence rescoring results

when combined with the NuXL features (see Figure S7). Interestingly,

the entrapment plot indicated that some overfitting exists (underes-

timation of the target-decoy FDR) when all MS2Rescore features are

added (as opposed to adding only our retention time and intensity fea-

tures). Thismight indicate that additionalMS2Rescore features are not

suitable for rescoring of protein-RNA crosslinks.

4 DISCUSSION

While retention time and intensity prediction methods for unmodified

peptides are well established, transferring these methods to modified

peptides, especially to those carrying large and diverse adducts, is still

a largely unsolved problem and an active area of research. A common

impediment to these methods is the quality and quantity of training

data available. Protein-RNA cross-linked peptides suffers from the

same issue. It is difficult to obtain sufficient data to train predictive

machine learning models on retention time and intensity features.

In this study, we leveraged transfer learning to predict the retention

time of cross-linked peptides and achieved a modest increase in the

identification rate of protein-RNA cross-links. Further improvement in

retention time prediction can be expected by including features that

(A) (B)

F IGURE 3 (A) Pseudo-ROC curves for the different set of features used in rescoring (here: diepoxybutane [DEB] protocol). The y-axis
represents the number of cross-link spectrummatches (CSMs) identified at different CSM-level q-value thresholds. The green vertical line
indicates the commonly used 0.01 CSM-level q-value threshold. (B) Comparison between false match rate (FMR) q-value (y-axis) and CSM-level
q-value (x-axis) for CSM-level entrapment analysis (diagonal reference line indicates matching FMR and empirical CSM-level q-value).
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expand over the simple encoding of the atomic composition. For the

more challenging task of predicting the first prefix and suffix inten-

sities of cross-linked peptides, we observed similar improvements

in identification rates. Here, the dependency on the cross-linking

protocol wasmore pronounced. Developing transfer learningmethods

that can cope with the large number of modifications for intensity

predictors and including more cross-link data once they become avail-

able is a future research direction to further improve the identification

rates of protein-RNA cross-linked peptides. Additional improvements

could potentially also be obtained by including cross-link specific

fragment ions into the spectrum prediction or fine-tuning process.

A final note of caution based on our experiment with including all

MS2Rescore features is that blindly including features can easily lead

to overfitting—particularly for the large search space of cross-linked

peptides. We thus want to underscore the importance of not solely

relying on target-decoy-based FDR estimation but also to conduct

entrapment experiments whenever new features are incorporated in a

rescoring process that involves large search spaces.
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